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Abstract 

A least-squares method is described for determining the 
orientation of a non-crystallographic symmetry axis in 
a general rectilinear coordinate system. In addition to 
the components of the symmetry axis, the calculation 
gives the coordinates of points from which the observed 
coordinates may be generated by application of the 
symmetry operator. A statistical test of the signifi- 
cance of the fit is described. 

Introduction 

A standard crystallographic computation determines 
the least-squares plane through a set of points. The 
principles of this computation were first derived by 
Schomaker, Waser, Marsh & Bergman (1959); an 
efficient matrix formulation of the process and a 
statistical analysis of the results have been given by 
Hamilton (1964). 

A problem related to the least-squares-plane cal- 
culation is the determination of whether or not a set of 
points is related by a non-crystallographic symmetry 
operation. In this case, the points do not lie on the 
symmetry element, but may be considered to be 
generated by application of a proper or improper 
rotation operator to three coordinates xl(0), x2(0), 
x 3(0). The operator may be represented as 

xi(k) = Rj(k) xJ(O), (1) 

where Rj(k) is the element in row i and columnj  of the 
matrix representing symmetry operator k. Throughout 
this paper we follow the tensor conventions (Sands, 
1982) that superscripts denote contravariant quantities, 
subscripts denote covariant quantities, and summation 
is implied over an index appearing once as a super- 
script and once as a subscript in a term. The indices in 
parentheses in (1) designate the particular symmetry 
operator; k runs from 1 to r, where r is the order of the 
rotation group, and we shall assign k = 1 to the identity 
operator. 

Mathematical formulation 

The coordinates x~(k) are estimates of the observed 
coordinates Xobs(k), and the x J(0) may be regarded as 
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ideal or 'best' coordinates that will give the best fit 
between the observations and the values estimated by 
(1). The general expression for R~. for a rotation 
through angle 0 about a unit vector u is (Sands, 1982) 

Rj = +[u i uj + (~j -- u i uj) cos 0 + gik ektjU t sin 0], (2) 

in which 6j is the Kronecker delta, gik is an element of 
the reciprocal metric tensor, and tkt j is an element of 
the permutation tensor. The plus sign in front of the 
brackets in (2) applies to a proper rotation and the 
minus sign applies to an improper rotation (an axis of 
rotatory inversion). The computation will require the 
derivatives of Rj. with respect to the components of u; 
the refinement may be carried out on either the 
covariant or the contravariant components of u, and 
the corresponding derivatives are 

~U m 

~U m 

-- -+ [(~/m Uj + gray Ui) ( 1 -- COS /9) + gik ekmj sin 0 l, 

(3) 

-- -t-[(gimuj + U i ~jm)(1--COS 0) 

+ gik glm Eklm sin 0]. (4) 

We shall take the contravariant coordinates u i as 
unknowns, but the problem may be reformulated easily 
in terms of the covariant ui. The other unknown 
parameters to be determined by the method of least 
squares are the coordinates xi(O). The problem may be 
generalized to multiple independent sets of points, as 
might occur, for example, in a molecule such as 
1,3,5-trichlorobenzene where there are four distinct 
atom types (two kinds of carbon, chlorine, and 
hydrogen); a convenient notation for such 
generalization is xi(0,j)  where the j  refers to atom type. 

Another potential source of unknowns involves 
specification of the origin. Equivalent to including the 
coordinates of the origin as explicit parameters in the 
least-squares treatment is the simple process of sub- 
tracting from each xi(k) the weighted mean over all 
values of k of the coordinates Xibs(k). Even points 
expected to lie on the rotation axis may be included in 
these weighted averages. The weighting should properly 
take into account correlations between coordinates, for 
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which a method of computation has been given by 
Sands (1966), although little useful information will be 
lost if a simple weighting by the reciprocal of the 
variances is used. 

Corresponding to each observation we define 

F(m) = R}(k)xJ(O) (5) 

in which 

m = i + 3 ( k -  I). (6) 

If there is more than one independent atom, x J(0) in (5) 
should be replaced by xJ(O,l), and m becomes 

m = i + 3 ( k -  1) + 3 r ( l -  1). (7) 

With this ordering of the observations, 

AF(m) Rj(k)  x.i(O) -- ' = Xobs(k), (8) 

where m takes on values from 1 to the number of 
observations n. If the number of parameters to be 
determined is p, the design matrix A is an n x p matrix 
in which the elements in row m are the derivatives of 
F(m) with respect to each of the parameters. 
Specifically, 

OF(m) 8R~(k) 
A , , , q - - - - x J ( 0 ) - -  if q =  1,2, or3 ,  (9) 

8u q 8u q 

OF(m) 
amq-- c~xJ(O ) -- Rj(k) ifq > 3. (10) 

The elements of A may be computed from an initial set 
of parameters. In the notation of Hamilton (1964), 
corrections to the parameters are given by the p × 1 
column matrix AX, 

AX = (AWA) -1 AW/IF ,  (11) 

in which ,g, is the transpose of A, W is an n × n weight 
matrix given by 

W = V -1, (12) 

where V is the variance-covariance matrix of the 
coordinates ordered as in (6) or (7). The shifts 
produced by (11) should be subtracted from the initial 
U 1, U 2, U 3, X I ( 0 ) ,  X 2 ( 0 ) ,  X 3 ( 0 ) .  Since the problem is 
non-linear, the design matrix depends upon the param- 
eters, and iteration generally will be required to 
converge to the set of parameters that minimizes the 
quantity AFW AF. 

Equation (2) requires that u be a unit vector. Hence, 
before iteration the corrected u should be normalized. 
The problem might, in fact, be treated as a constrained 
least-squares calculation with the condition 

gijuiu j =  1. (13) 

Infinitesimal shifts in the vector components must then 
obey 

gijui du J= O. (14) 

The relationship is not so simple for finite shifts, so 
formal introduction of the constraint into the least- 
squares calculation does not obviate the necessity for 
renormalization of u after each cycle. 

Statistical significance of  results 

The variance-covariance matrix of the least-squares 
parameters may be obtained from 

V = AFW AFtB-' -- B -1 QQB-~/(QB -1 Q)] 

x ( n - - p  + 1) -l, (15) 

where B is the p × p matrix 

B =  ~,WA, (16) 

and Q is the p x 1 constraint matrix with elements 

Q j : g i y u i : u j  f o r j =  1 ,2 ,3  
(17) 

Q j = 0  for j > 3 ;  

i.e. the constraint of (14) may be expressed as 

QjduJ = 0. (18) 

The statistical significance of the results may be 
examined by means of a X 2 test on AFWAF:  if 
A F W A F  is less than Z 2 for n - p  + 1 degrees of 
freedom and a, the deviations from the assumed 
symmetry are not significant at level a. Suitable tables 
of the )f2 distribution are available in most statistical 
references (e.g. Hamilton, 1964). 

Example 

A good example for illustrating the method of 
computation is afforded by the chromate oxygen atoms 
in sodium chromate tetrahydrate (Ruben, Olovsson, 
Zalkin & Templeton, 1973), in which the oxygen 
tetrahedron is appreciably distorted from regularity by, 
presumably, hydrogen bonding and packing effects. 
The crystals are monoclinic with a = 6.186, 
b = 11.165, c = 12.20 A, fl = 104.95 °. Table 1 lists 
the reported coordinates of the atoms in a chromate 
ion. For each calculation the weight matrix was the 
diagonal matrix with elements 1/a 2, where a i is the 
standard deviation given in parentheses in Table 1. 

Table 1. Coordinates o f  chromate atoms in Na2CrO4.- 
4H20 

X I X 2 X 3 

Cr 0.2644 (2) 0.4003 (9) 0.2400 (9) 
O(1)  0.3750 (8) 0.4286 (5) 0-3734 (4) 
0(2) 0.3392 (8) 0.2641 (4) 0.2122 (4) 
0(3) 0.3473 (8) 0.4939 (5) 0.1596 (4) 
0(4) --0.0146 (7) 0.4086 (5) 0.2137 (4) 

Estimated standard deviations of the last digit are given in 
parentheses. 
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o(1) 
0(2) 
0(3) 

Table 2. Fit o f  threefold axis to O ( 1 ) - O ( 2 ) - O ( 3 )  

Observed coordinates Calculated coordinates 
X I X 2 X 3 X I X 2 X 3 

0.0212 0.0538 0.1250 0.0197 0.0357 0-1252 
--0.0146 -0.1107 --0.0362 --0.0170 - -0 .1341 --0.0349 
--0.0065 0.1191 --0.0888 --0.0070 0.0985 --0.0907 

Table 3. Fit o f  3 and 4 symmetry operators to chromate oxygen atoms 

Symmetry Atoms u ~ u 2 u 3 

3 O(1)-O(2)-O(3) 0.1667 -0.0037 0.0158 
3 O(I)-O(2)-O(4) 0.0571 0.0605 -0.0461 
3 O(I)-O(3)-O(4) -0.0436 0.0828 0.0171 
3 0(2)-0(3)-0(4) 0.0687 0.0213 0.0811 

O(1)-O(2)-O(4)-O(3) -0.0850 0.0203 0.0570 
4 O(1)-O(3)-O(2)-O(4) 0.0829 -0.0516 0.0641 
~, O(I)-O(2)--O(3)--O(4) -0.1011 --0.0654 -0.0393 

AFWAF 

3.19 x 10 3 
1-47 x 103 
1.76 x 10 a 
3.62 x 103 

81.4 
5.50 x 103 
4.89 x 103 

Table 2 shows the result of the computation for a 
threefold axis relating the coordinates of atoms O(1), 
O(2), and 0(3).  The coordinates were shifted by 
subtracting the weighted means of the coordinates of 
these three atoms. The severe distortions from tetra- 
hedral symmetry led to substantially poorer fits if the 
origin specification was based upon all five atoms of the 
anion, so only the atoms related by the particular 
symmetry operation were included in each case. For 
O(1)--O(2)--O(3) the best symmetry axis was found to 
be in the crystal direction [0.1667, - 0 . 0 0 3 7 ,  0.0158], 
which is at an angle of 0.8 ° with the C r - O ( 4 )  
direction. 

Table 3 shows the derived unit vector and the degree 
of fit for each of the 3 and 4 symmetry axes that would 
relate the oxygen atoms in an anion of perfect 
tetrahedral symmetry. The order of listing the atoms in 
the 4 rows of Table 3 is the order in which successive 
applications of the 4 operator would generate the 
atoms. With seven degrees of freedom the probability 
that A F W A F  be as high as 81.4 by chance is about 
1 x 10 -9, SO the probability is vanishingly small in each 

case that the deviations from the assumed symmetry 
are not real; that is, it is virtually certain that the 
distortions are real. 

The numerical calculations reveal that convergence 
occurs even if the initial choice of u is far removed from 
the correct orientation. In one case, an incorrect vector 
was rotated 180 ° in the course of several iterations. 
Convergence of such extreme situations is not reliable, 
but the computation invariably converged if u started 
within 60 ° of its final orientation. 
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